Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The interplay between coherence and system-environment interactions is at the basis of a wide range of phenomena, from quantum information processing to charge and energy transfer in molecular systems, biomolecules, and photochemical materials. In this work, we use a Frenkel exciton model with long-range interacting qubits coupled to a damped collective bosonic mode to investigate vibrationally assisted transfer processes in donor-acceptor systems featuring internal substructures analogous to light-harvesting complexes. We find that certain delocalized excitonic states maximize the transfer rate and that the entanglement is preserved during the dissipative transfer over a wide range of parameters. We investigate the reduction in transfer caused by static disorder, white noise, and finite temperature and study how transfer efficiency scales as a function of the number of dimerized monomers and the component number of each monomer, finding which excitonic states lead to optimal transfer. Finally, we provide a realistic experimental setting to realize this model in analog trapped-ion quantum simulators. Analog quantum simulation of systems comprising many and increasingly complex monomers could offer valuable insights into the design of light-harvesting materials, particularly in the nonperturbative intermediate parameter regime examined in this study, where classical simulation methods are resource intensive.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Convolutional neural networks (CNNs) have been employed along with variational Monte Carlo methods for finding the ground state of quantum many-body spin systems with great success. However, it remains uncertain how CNNs, with a model complexity that scales at most linearly with the number of particles, solve the “curse of dimensionality” and efficiently represent wavefunctions in exponentially large Hilbert spaces. In this work, we use methodologies from information theory, group theory and machine learning, to elucidate how CNN captures relevant physics of quantum systems. We connect CNNs to a class of restricted maximum entropy (MaxEnt) and entangled plaquette correlator product state (EP-CPS) models that approximate symmetry constrained classical correlations between subsystems. For the final part of the puzzle, inspired by similar analyses for matrix product states and tensor networks, we show that the CNNs rely on the spectrum of each subsystem's entanglement Hamiltonians as captured by the size of the convolutional filter. All put together, these allow CNNs to simulate exponential quantum wave functions using a model that scales at most linear in system size as well as provide clues into when CNNs might fail to simulate Hamiltonians. We incorporate our insights into a new training algorithm and demonstrate its improved efficiency, accuracy, and robustness. Finally, we use regression analysis to show how the CNNs solutions can be used to identify salient physical features of the system that are the most relevant to an efficient approximation. Our integrated approach can be extended to similarly analyzing other neural network architectures and quantum spin systems. Published by the American Physical Society2025more » « less
-
Abstract We present analytical results of the fundamental properties of the one-dimensional (1D) Hubbard model with a repulsive interaction. The new model results with arbitrary external fields include: (I) using the exact solutions of the Bethe ansatz equations of the Hubbard model, we first rigorously calculate the gapless spin and charge excitations, exhibiting exotic features of fractionalized spinons and holons. We then investigate the gapped excitations in terms of the spin string and the string bound states at arbitrary driving fields, showing subtle differences in spin magnons and charge -pair excitations. (II) For a high-density and high spin magnetization region, i.e. near the quadruple critical point, we further analytically obtain the thermodynamic properties, dimensionless ratios and scaling functions near quantum phase transitions. (III) Importantly, we give the general scaling functions at quantum criticality for arbitrary filling and interaction strength. These can directly apply to other integrable models. (IV) Based on the fractional excitations and the scaling laws, the spin-incoherent Luttinger liquid (SILL) with only the charge propagation mode is elucidated by the asymptotic of the two-point correlation functions with the help of conformal field theory. We also, for the first time, obtain the analytical results of the thermodynamics for the SILL. (V) Finally, to capture deeper insights into the Mott insulator and interaction-driven criticality, we further study the double occupancy and propose its associated contact and contact susceptibilities, through which an adiabatic cooling scheme based upon quantum criticality is proposed. In this scenario, we build up general relations among arbitrary external- and internal-potential-driven quantum phase transitions, providing a comprehensive understanding of quantum criticality. Our methods offer rich perspectives of quantum integrability and offer promising guidance for future experiments with interacting electrons and ultracold atoms, both with and without a lattice.more » « less
-
Electron transfer is at the heart of many fundamental physical, chemical, and biochemical processes essential for life. The exact simulation of these reactions is often hindered by the large number of degrees of freedom and by the essential role of quantum effects. Here, we experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal, where the donor-acceptor gap, the electronic and vibronic couplings, and the bath relaxation dynamics can all be controlled independently. By manipulating both the ground-state and optical qubits, we observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics. Our results provide a testing ground for increasingly rich models of molecular excitation transfer processes that are relevant for molecular electronics and light-harvesting systems.more » « less
An official website of the United States government
